

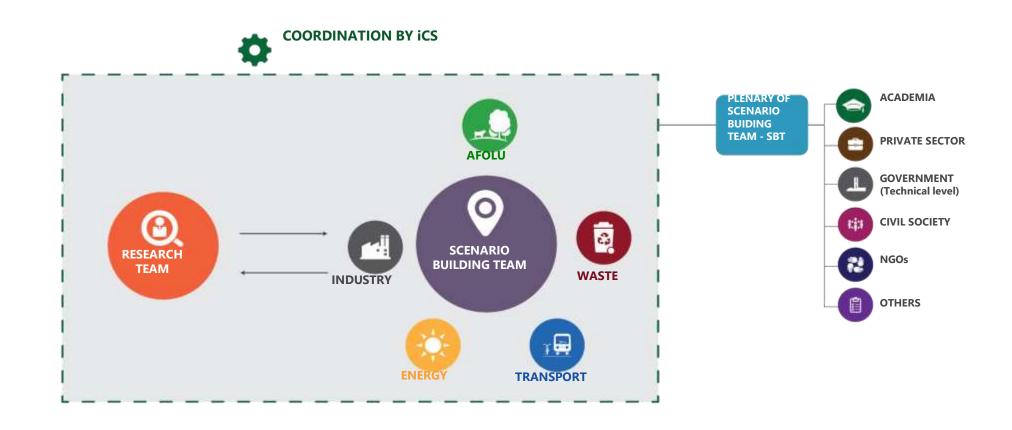
Greenhouse Gas Emission Scenarios for Brazil up to 2050

Centro Clima / COPPE / UFRJ

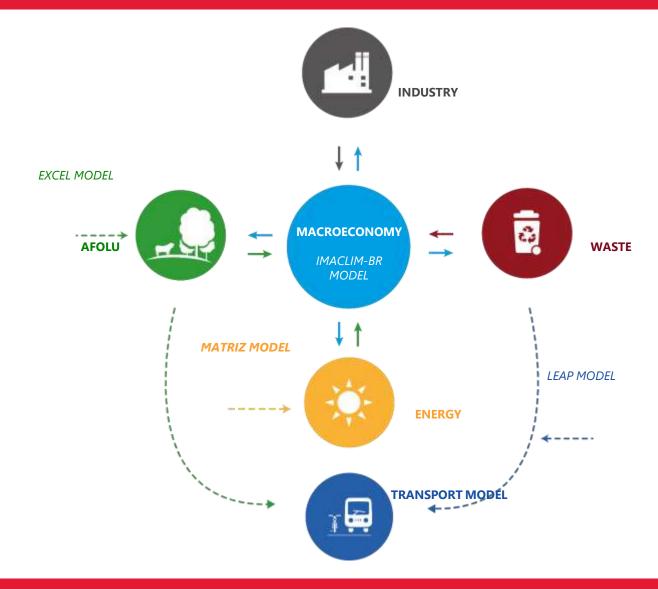
COP-26 - 9 November 2021

Supported by

IES-Brasil Process: Dialogue with stakeholders



- Scenario Building Team (SBT) for stakeholders engagement: experts from the government, business sector, scientific community and NGOs
- Modelling team coordinated by Centro Clima
- The SBT (>200 experts contacted through bilateral meetings and workshops, split in 6 sectors) is responsible for:
 - agreeing upon the scenarios general and sectorial assumptions
 - identifying mitigation measures to be adopted in the scenario runs;
 estimating their viability, costs and pace of deployment
 - Identifying barriers to the deep decarbonization scenarios and policy tools (regulatory and economic) to overcome them



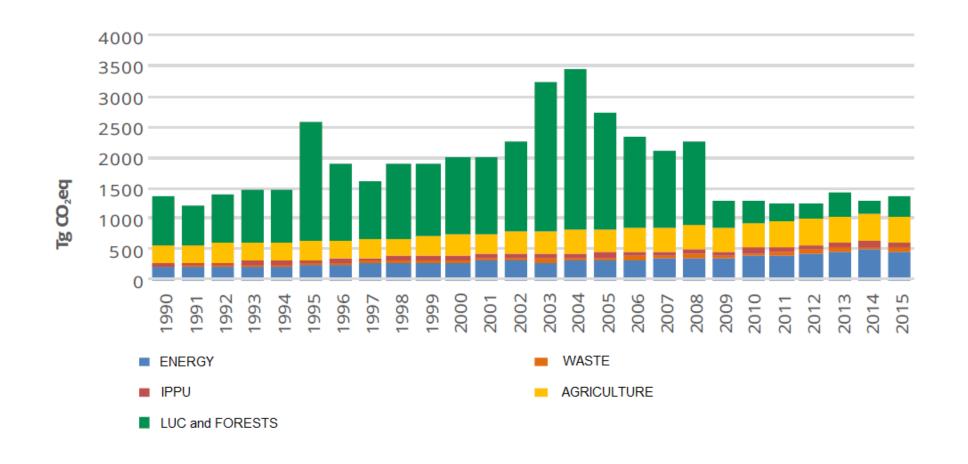
DIALOGUE WITH STAKEHOLDERS

MODELLING TOOLS

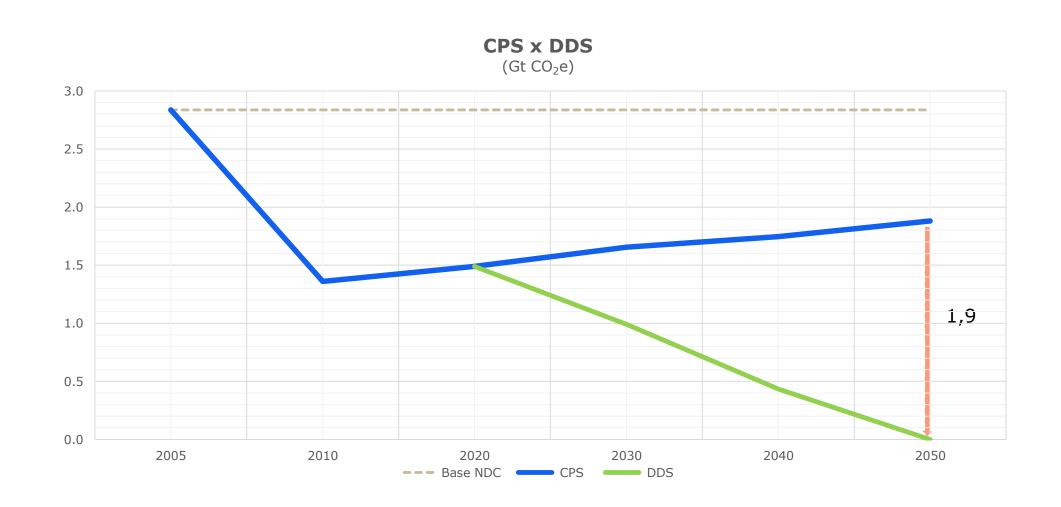
Methodology - Scenario Design

Two Scenarios:

- CPS (Current Policies Scenario)
 - Current mitigation actions only: no increase in ambition and no carbon pricing
- DDS (Deep Decarbonization Scenario) backcasting to net zero GHG emissions in 2050
 - Radical reduction of annual deforestation rate and increase of forest sinks
 - Carbon pricing from 2025 to 2050:
 - on IPPU and energy-related emissions (AFOLU and Waste emissions not included)
 - Applied through a cap-and-trade scheme in industry, and carbon taxes in other sectors
 - 25 US\$/tCO2e in 2030; 45 USD/tCO2e in 2040 and 65 USD/tCO2e in 2050
 - Fiscal neutrality; 100% of revenues from carbon pricing used to reduce labor taxes (to increase employment generation) and to compensate poor households of the increase in general price levels
 - Sectoral models include mitigation actions up to the carbon price in each period.



Brazilian GHG Emissions



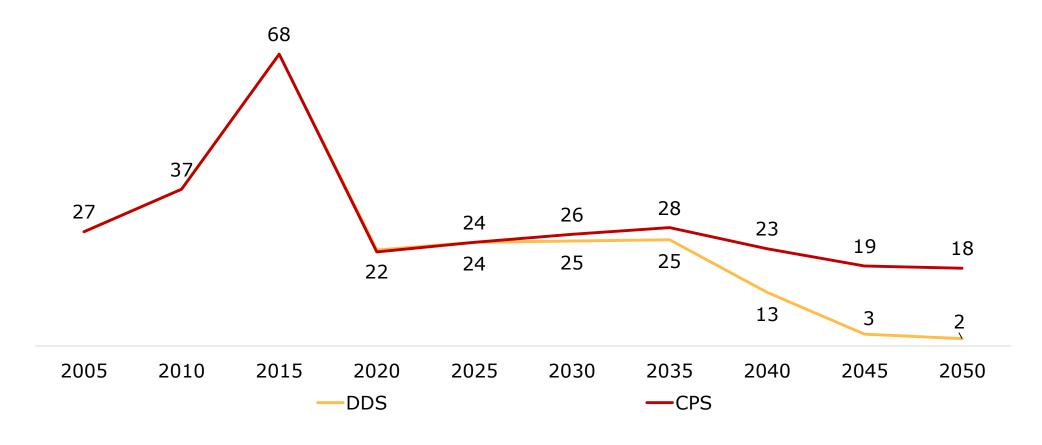
GHG emissions in Brazil (3rd National Communication)

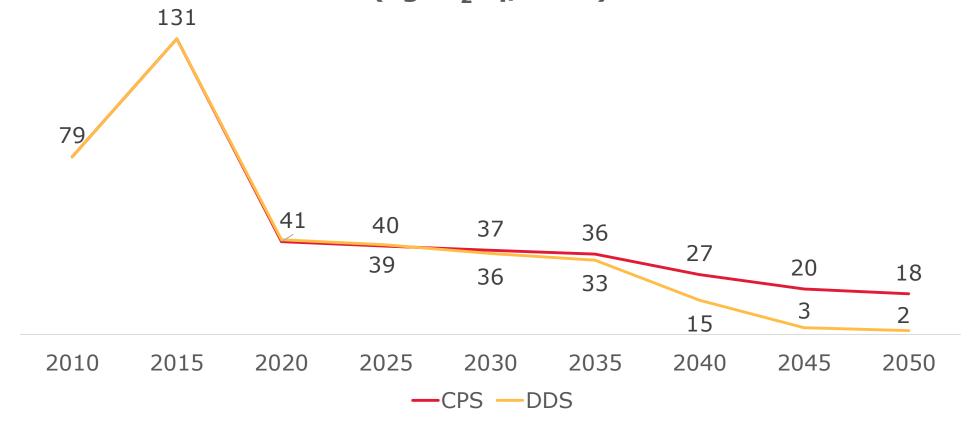
Results: Economy-wide GHG Emissions (Gt CO₂eq)

Greenhouse Gas Emission Scenarios for the Power Sector in Brazil until 2050

COP-26 - 9 November 2021

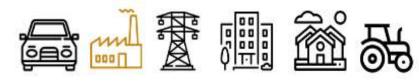
Supported by





Emissions from Thermopower generation (Mt CO₂eq)

GHG emission factor from electricity consumption (kgCO₂eq/MWh)



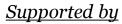
Results - Electricity Consumption

2050: Electricity demand is 6% lower in DDS than in CPS (greater energy efficiency in Industry, mainly)

Consumption (%)

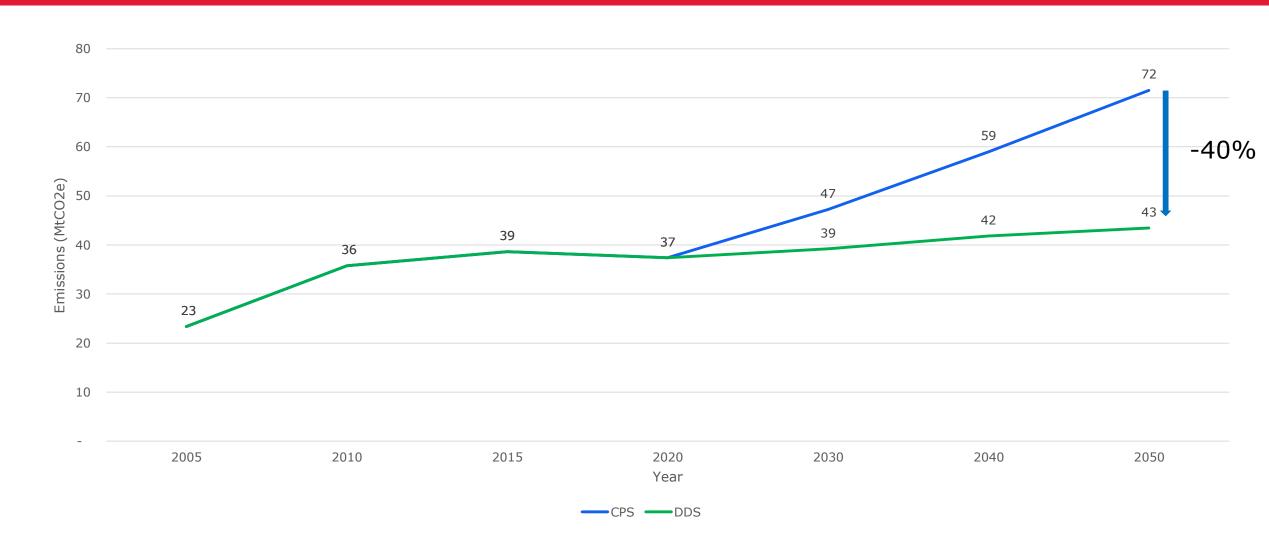
Indicators

Mentioned in 1st NDC	Data	CPS			DDS				NDC Goal	
Indicator	2015	2020	2030	2040	2050	2020	2030	2040	2050	2030
Share of renewables in the energy matrix(%)	43%	50%	<u>50%</u>	52%	53%	50%	<u>53%</u>	59%	62%	<u>45%</u>
Share of renewables, except hydro, in the energy matrix(%)	32%	37%	<u>36%</u>	39%	41%	37%	<u>39%</u>	44%	48%	<u>28%</u>
Share of renewables in electricity generation(%)	60%	83%	81%	86%	<u>89%</u>	83%	<u>82%</u>	90%	95%	-
Share of renewables, except hydro, in electricity generation(%)	16%	23%	<u>24%</u>	31%	44%	23%	<u>24%</u>	33%	46%	<u>23%</u>
Electricity Consumption/Energy	17%	18%	19%	19%	20%	18%	20%	22%	25%	47



Centro Clima / COPPE / UFRJ

COP-26 - 9 November 2021



Results for the Cement Industry – GHG Emissions (MtCO2eq)

Indicators for the Cement Industry

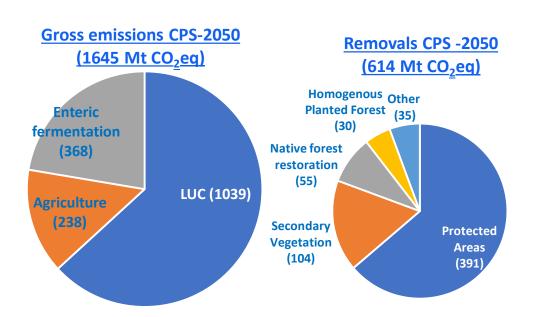
Indicator	2015	2020	2030		2040		2050	
			CPS	DDS	CPS	DDS	CPS	DDS
Cement production (Mt)	65	63	80	73	100	86	122	95
Intensity (GJ/Mt cement)	3,0	3,1	3,1	2,8	3,1	2,6	3,0	2,3
Energy consumption (ktoe)	3.577	4.642	5.866	4.954	7.300	5.269	8.812	5.257
Ratio Clinker/cement	64%	64%	64%	58%	64%	53%	64%	52%
Emissions intensity (MtCO2e/Mt cement)	0,59	0,59	0,59	0,53	0,59	0,49	0,59	0,45
% biomass	3.8%	3.8%	3.8%	6.1%	3.8%	8.3%	3.8%	10%
GHG emissions (MtCO2e)	39	37	47	39	59	42	72	43

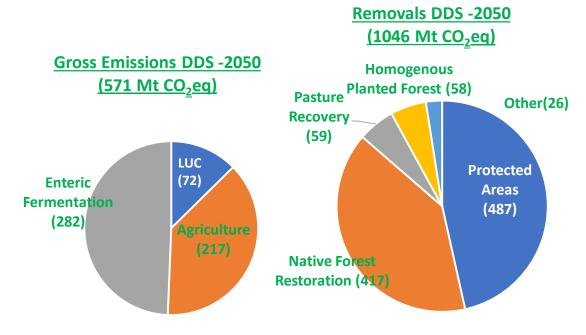
Greenhouse Gas Emission Scenarios for Agriculture in Brazil until 2050

Centro Clima / COPPE / UFRJ

COP-26 - 9 November 2021

Supported by





Results: Gross and Net AFOLU Emissions

AFOLU Emissions (Mt CO ₂ e)	2010*	2019	2020	2030	2040	2050
Gross Emissions- CPS	1154	1494	1558	1589	1605	1645
Gross Emissions - DDS	1134			1161	734	571
Net Emissions - CPS	841	900	951	1012	1007	1031
Net Emissions - DDS	041			459	-67	-475

^{*} Data adapted from the 3rd National Communication (Brazil, 2016); Agriculture: includes agricultural soils, rice cultivation, burning of agricultural residues and waste management. LUC: Land Use Change

Indicators (main emissions drivers)

Indicator			2020		CPS		DDS		
	2010	2019		2030	2040	2050	2030	2040	2050
Livestock Integration Systems – with forestry component (Mha)	0,9	2,6	2,8	3,3	3,8	4,0	3,6	4,3	5,1
Recovered pastures (Mha)		11	12	17	24	30	27	44	60
Average stocking rate (head/ha)	1,11	1,31	1,31	1,37	1,45	1,56	1,39	1,56	1,96
Cattle herd (million head)	210	214	215	225	229	244	217	208	185
Carcasse weight (Kg/head)	222	242	242	247	257	270	254	284	351
Slaughter age				37 meses			27 meses		

Key Findings

- DDS is just one among many pathways for Brazil to reach climate neutrality by 2050;
- Underlying assumption: use of available technologies only; huge mitigation potential at low costs in Brazil even before the deployment of technological "breakthroughs";
- DDS allows to reach carbon neutrality while keeping slightly better economic and social development results than in CPS (smart recycling of carbon pricing revenues);
- A pathway towards net-zero GHG emissions in 2050 can be reached with a carbon price of 25, 45 and 65 USD/t CO₂eq, respectively, in each decade.
- Command and control policies combined with constraining the access of farmers and ranchers to public credits (subject to conformity with environmental laws and regulations) achieve 59% of total cumulative GHG emission reductions up to 2050, through the sharp reduction of annual deforestation rate;
- Native vegetation restoration in public and private areas have a significant abatement potential and lower costs than mitigation actions in other sectors.
- Decarbonization milestones and benchmark indicators are provided at the sectorial level to monitor, report and verify (MRT) the progress towards achieving targets.